Source code for torchmin.trustregion.dogleg

"""
Dog-leg trust-region optimization.

Code ported from SciPy to PyTorch

Copyright (c) 2001-2002 Enthought, Inc.  2003-2019, SciPy Developers.
All rights reserved.
"""
import torch
from torch.linalg import norm

from .base import _minimize_trust_region, BaseQuadraticSubproblem


[docs]def _minimize_dogleg( fun, x0, **trust_region_options): """Minimization of scalar function of one or more variables using the dog-leg trust-region algorithm. .. warning:: The Hessian is required to be positive definite at all times; otherwise this algorithm will fail. Parameters ---------- fun : callable Scalar objective function to minimize x0 : Tensor Initialization point initial_trust_radius : float Initial trust-region radius. max_trust_radius : float Maximum value of the trust-region radius. No steps that are longer than this value will be proposed. eta : float Trust region related acceptance stringency for proposed steps. gtol : float Gradient norm must be less than `gtol` before successful termination. Returns ------- result : OptimizeResult Result of the optimization routine. References ---------- .. [1] Jorge Nocedal and Stephen Wright, Numerical Optimization, second edition, Springer-Verlag, 2006, page 73. """ return _minimize_trust_region(fun, x0, subproblem=DoglegSubproblem, **trust_region_options)
class DoglegSubproblem(BaseQuadraticSubproblem): """Quadratic subproblem solved by the dogleg method""" hess_prod = False def cauchy_point(self): """ The Cauchy point is minimal along the direction of steepest descent. """ if self._cauchy_point is None: g = self.jac Bg = self.hessp(g) self._cauchy_point = -(g.dot(g) / g.dot(Bg)) * g return self._cauchy_point def newton_point(self): """ The Newton point is a global minimum of the approximate function. """ if self._newton_point is None: p = -torch.cholesky_solve(self.jac.view(-1,1), torch.linalg.cholesky(self.hess)) self._newton_point = p.view(-1) return self._newton_point def solve(self, trust_radius): """Solve quadratic subproblem""" # Compute the Newton point. # This is the optimum for the quadratic model function. # If it is inside the trust radius then return this point. p_best = self.newton_point() if norm(p_best) < trust_radius: hits_boundary = False return p_best, hits_boundary # Compute the Cauchy point. # This is the predicted optimum along the direction of steepest descent. p_u = self.cauchy_point() # If the Cauchy point is outside the trust region, # then return the point where the path intersects the boundary. p_u_norm = norm(p_u) if p_u_norm >= trust_radius: p_boundary = p_u * (trust_radius / p_u_norm) hits_boundary = True return p_boundary, hits_boundary # Compute the intersection of the trust region boundary # and the line segment connecting the Cauchy and Newton points. # This requires solving a quadratic equation. # ||p_u + t*(p_best - p_u)||**2 == trust_radius**2 # Solve this for positive time t using the quadratic formula. _, tb = self.get_boundaries_intersections(p_u, p_best - p_u, trust_radius) p_boundary = p_u + tb * (p_best - p_u) hits_boundary = True return p_boundary, hits_boundary